

CBIT Maldives


the Maldives Project

Capacity Building for Improved Transparency of Climate Change Mitigation and Adaptation Actions in

JANUARY 24, 2025

PREPARED BY: DEVELOPMENT ADVISORY SERVICES

INTRODUCTION

Energy sector comprises of emissions resulting from activities by fuel combustion and as fugitive emissions i.e. escape without combustions.

What is fuel combustion?

"the intentional oxidation of materials within an apparatus that is designed to provide heat or mechanical work to a process, or for use away from the apparatus"

What is fugitive emissions?

Fugitive emissions in the energy sector arise from extraction, transformation and transportation of primary energy carriers.

MOBILE COMBUSTION

- Mobile combustion involves the burning of fuels for transportation, whether by road, rail, air, or sea
- •These slides provide a guidance for calculating emissions from mobile combustion (eg: road transportation, sea transportation, aviation)

the Maldives Project

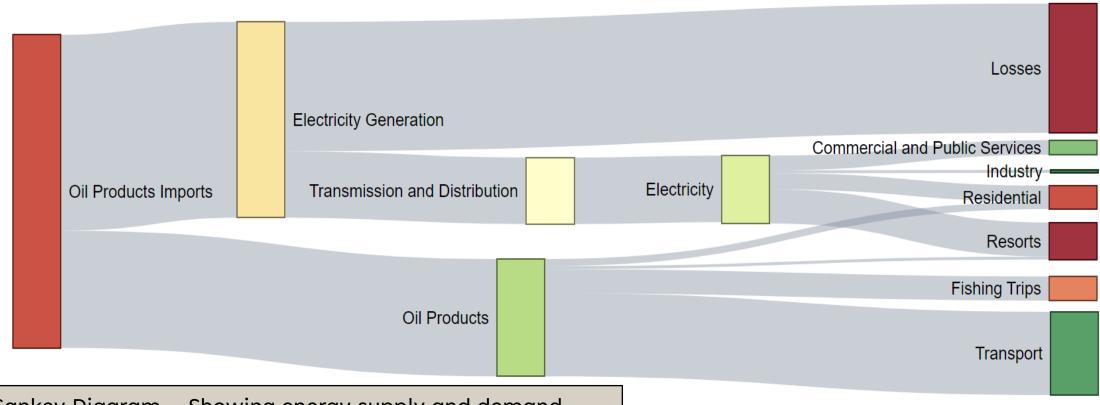
Climate Change Mitigation and Adaptation Actions in

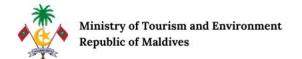
MALDIVES CONTEXT

CBIT Maldives

the Maldives Project

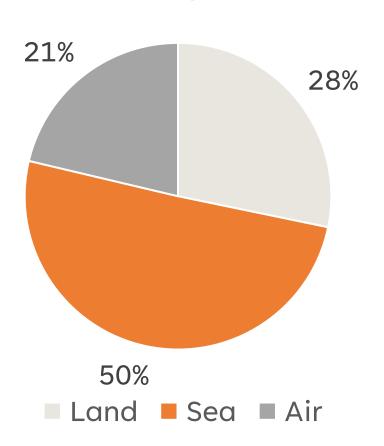
Capacity Building for Improved Transparency of


Climate Change Mitigation and Adaptation actions in



NATIONAL CONTEXT - ENERGY

Sankey Diagram – Showing energy supply and demand

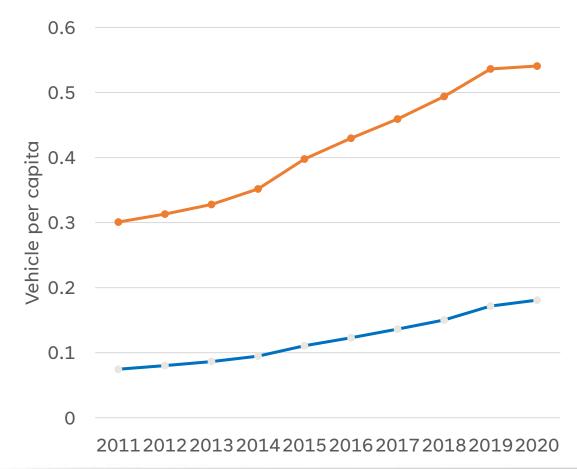

the Maldives Project

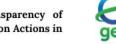
Capacity Building for Improved Transparency of

Climate Change Mitigation and Adaptation Actions in

NATIONAL CONTEXT - EMISSIONS FROM TRANSPORT SECTOR

CBIT Maldives


the Maldives Project


NATIONAL CONTEXT - TRANSPORT SECTOR

Vehicle per capita Male – 7.5% Vehicle per capita Atolls – 11% Speedboat/Launch - 8.8% Dhoani - 2.3%

SECTORAL APPROACH OVERVIEW

CBIT Maldives

the Maldives Project

SECTORAL APPROACH

Proxy data: GDP, Population, Bednights, vehicle/vessel numbers

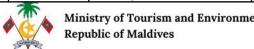
Mobile GHG estimate

Civil Aviation

Road Transportation Water Borne Navigation

RELEVANT IPCC CATEGORIES FOR MOBILE FUEL COMBUSTION

IPCC	CRT	Category	Relevance to Maldives Context
Category	category		
Code	code		
1A		Fuel Combustion	
		Activities	
1A3	1A3	Transport	
1A3a		Civil aviation	
1A3ai	memo	International	This covers all international aviation. Data should be collected from all international airports in Maldives
	item	Aviation	regarding the refueling. For tier 2 the method would requires flight movements which would be available from the
		(International	airports. Note only flights departing to or arriving from foreign airport should be considered in this calculation
		Bunkers)	
1A3aii	1A3a	Domestic Aviation	This covers all domestic aviation including sea plane operations. Data should be collected from all airports in
			Maldives regarding the refueling. For tier 2 the method would requires flight movements which would be available
			from the airports. Note no flights departing to or arriving from foreign airport should be considered in this
			calculation



RELEVANT IPCC CATEGORIES FOR MOBILE FUEL **COMBUSTION**

IPCC	CRT	Category	Relevance to Maldives Context
Category	category		
Code	code		
1A		Fuel Combustion	
		Activities	
1A3b	1A3b	Road	
		Transportation	
1A3bi	1A3bi	Cars	This covers all road transport through cars as defined by IPCC. This includes public and private cars fuel
			consumption
1A3bii	1A3bii	Light duty trucks	This covers all road transport through Light duty trucks as defined by IPCC. This includes public and private trucks
			and buses fuel consumption
1A3biii	1A3biii	Heavy duty trucks	This covers all road transport through trucks and buses as defined by IPCC. This includes public and private trucks
		and buses	and buses fuel consumption
1A3biv	1A3biv	Motorcycles	This covers all road transport through Motorcycles as defined by IPCC. This includes public and private
			motorcycles fuel consumption
1A3bv		Evaporative	This covers evaporative emissions from vehicles including lubricants evaporation
		emissions from	
		vehicles	
1A3bvi		Urea-based	This is assumed to be not occurring in Maldives
		catalysts	
	Min.	istry of Tourism and Environm	CBIT Maldives ent Conseity Building for Improved Transportancy of global

RELEVANT IPCC CATEGORIES FOR MOBILE FUEL COMBUSTION

IPCC	CRT	Category	Relevance to Maldives Context
Category	category		
Code	code		
1A		Fuel Combustion	
		Activities	
1A3d		Water-borne	
		Navigation	
1A3di		International	This covers all emissions related to international maritime vehicles that is either coming from or going to a foreign
		Water-borne	port. The reexport value for diesel is considered as data
		Navigation	
		(International	
		Bunkering)	
1A3dii	1A3d	Domestic Water-	This covers all domestic transport excluding fishing. This means all passenger and cargo transport irrespective of
		borne Navigation	economic sector.
1A3e	1A3e	Other	
		Transportation	
1A3ei	1A3ei	Pipeline Transport	This does not occur in Maldives
1A3eii		Off-road	This occurs in Maldives and covers all transport activity undertaken within all ports, harbours and off-road
			activities taking place at reclamation sites covering land and sea vehicles.

the Maldives Project

RELEVANT IPCC CATEGORIES FOR MOBILE FUEL COMBUSTION

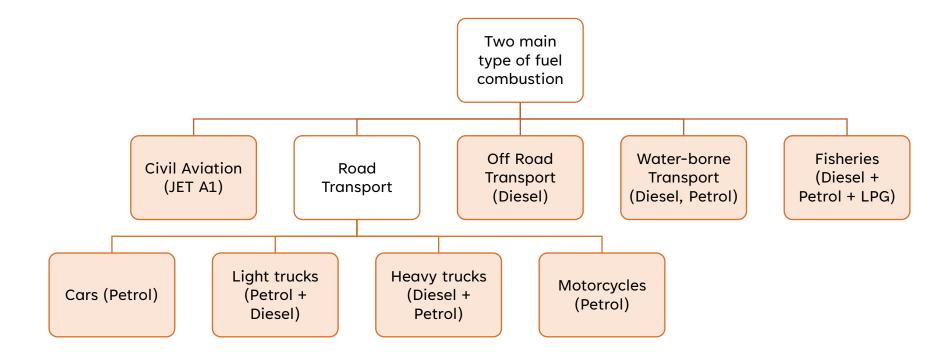
IPCC	CRT	Category	Relevance to Maldives Context
Category	category		
Code	code		
1A		Fuel Combustion	
		Activities	
1A4	1A4	Other Sectors	
	1A4a	Commercial/institut	
		ional	
	1A4aii	Off-road vehicles	IPCC category 1A3eii commercial/institutional component is reported here.
		and other	
		machinery	
	1A4b	Residential	
	1A4bii	Off-road vehicles	IPCC category 1A3eii residential component is reported here. In the Maldives there are no residential off road
		and other	transport to be considered
		machinery	
1A4c	1A4c	Agriculture/Forestry	
		/Fishing/Fish farms	
1A4cii	1A4cii	off-road vehicles	This occurs in Maldives and covers all mobile fuel combustion in agricultural islands including off road transport,
		and other	land tilling. However, the information is likely going to scattered to very small quantities and needs a survey to
		machineries	collect
1A4ciii	1A4ciii	Fishing (mobile	This occurs in Maldives and is key category. It covers all emissions from fishing vessels including for transport,
		combustion)	cooking and other auxiliary purposes on the vessel.
	THE REAL PROPERTY.		the Maldives Project

RELEVANT IPCC CATEGORIES FOR MOBILE FUEL **COMBUSTION**

IPCC	CRT	Category	Relevance to Maldives Context
Category	category		
Code	code		
1A		Fuel Combustion	
		Activities	
1A5	1A5	Non-Specified	
1A5b	1A5b	Mobile	In the CRT all of the sub categories under this is reported together
1A5bi		Mobile (aviation	This occurs in Maldives and covers aviation fuel combustion by MNDF military flights/drones and search and
		component)	rescue operations
1A5bii		Mobile (water-	This occurs in Maldives and covers water-borne fuel combustion by coastguard and Marine Police services and
		borne component)	any other marine based fuel combustion carried out by military including search and rescue operations
1A5biii		Mobile (other)	
		Multi-lateral	This could include refueling of vessels and air crafts for military operations by non-Maldivian military. This should
		Operations	not be included in the national total but reported as a memo-item.

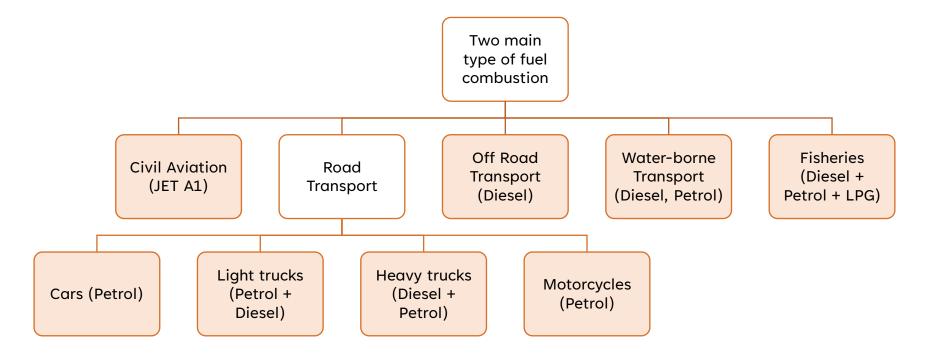
CBIT Maldives

the Maldives Project



DATA FOR SECTORAL APPROACH

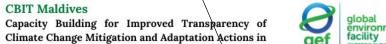
Capacity Building for Improved Transparency of


Climate Change Mitigation and Adaptation Actions in

DATA FOR SECTORAL APPROACH

What data from which sources??

Climate Change Mitigation and Adaptation Actions in



CIVIL AVIATION

CBIT Maldives

OVERVIEW

- Emissions from aviation sector comes from the combustion of jet fuel (jet kerosene and jet gasoline) and aviation gasoline.
- In the Maldives, the types of aviation gases used (kerosene oil, Jet A1 and other sources of kerosene) are considered under Jet Kerosene
- In the Maldives, Tier 1 is used to estimate emissions from the civil aviation sector due to the limited availability of quality data.
- Tier 1 method of calculating emissions for the aviation sector is based on an aggregate quantity of fuel consumption data for aviation multiplied by the default emission factors.

		Emis	sion fact kg/TJ	tor (EF)
Fuel	NCV	CO ₂	CH ₄	N ₂ O
Jet Kerosene	44.1	7150 0	0.5	2

ESTIMATION METHODS

Fuel Consumption method

Data Required: Fuel use for aviation data segregated between international and domestic preferably in monthly intervals

Data Source: MACL, Regional Airports

Jet Fuel Sales January 2016	Liters
International	13,564,200
Domestic	3,454,166
MACL OWN CONSUMPTION	440
Total	17,018,806
Domestic Sales details	
(SEAPLANE) ISLAND AVIATION SERVICES	172,441
TRANS MALDIVIAN AIRWAYS	1,717,938
ISLAND AVIATION SERVICES	1,273,861
FLY ME (DOM)	262,526
MANTA AIR	0
EXTRA / ADHOC FLIGHTS	27,400
Total	3,454,166

Landing and Take off method

Data Required: landing and take-off activity data including aircraft type and route

Data Source: MACL, Regional Airports, CAA

Emissions = LTO Emissions + Cruise emissions

			LTO FUEL CONSUMPTION						
	AIRCRAFT	CO ₂ ⁽¹¹⁾	CH4 ⁽⁸⁾	N ₂ O ⁽⁹⁾	NOx	со	NMVOC ⁽⁸⁾	SO ₂ ⁽¹⁰⁾	(Kg/LTO)
	A300	5450	0.12	0.2	25.86	14.80	1.12	1.72	1720
	A310	4760	0.63	0.2	19.46	28.30	5.67	1.51	1510
Turboprops ⁴⁾	Beech King Air ⁽⁵⁾	230	0.06	0.01	0.30	2.97	0.58	0.07	70
ırbopı	DHC8-100 (6)	640	0.00	0.02	1.51	2.24	0.00	0.20	200
Tr	ATR72-500 (7)	620	0.03	0.02	1.82	2.33	0.26	0.20	200

CBIT Maldives

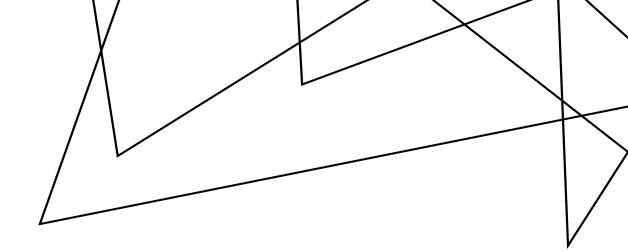
QUALITY CHECKS

- Compare the fuel use data (for both international and domestic with imports
- Check the trends of multiple years or within the year for outliers and provide reasonable explanation for outliers
- fuel usage data from the individual operators could also be obtained and compared with data provided by MACL

ROAD TRANSPORT

CBIT Maldives

the Maldives Project


Capacity Building for Improved Transparency of

Climate Change Mitigation and Adaptation actions in

OVERVIEW

- Emissions for road transport can be estimated using either fuel consumed (fuel sold) or distance travelled. Generally, CO₂ calculations are made using fuel sold and non-CO₂ estimations are made using data on distance travelled.
- The choice of method (Tier 1 or 2) for calculating emissions of CH₄ and N₂O should be based on the availability and quality of data. This involves use of vehicle activity levels using VKT, age, emissions control technology.
- Due to limited availability of quality data, Maldives uses a VKT approach to estimate the fuel consumption with default emissions factors for all gases to calculate emissions for road transport (Tier 1)

IPCC DEFINITIONS OF VEHICLES

Cars	Emissions from automobiles so designated in the vehicle registering country primarily for transport of persons and normally having a capacity of 12 persons or fewer.
Light duty trucks	Emissions from vehicles so designated in the vehicle registering country primarily for transportation of light-weight cargo or which are equipped with special features such as four-wheel drive for off-road operation. The gross vehicle weight normally ranges up to 3500-3900 kg or less.
Heavy duty trucks and buses	Emissions from any vehicles so designated in the vehicle registering country. Normally the gross vehicle weight ranges from 3500-3900 kg or more for heavy duty trucks and the buses are rated to carry more than 12 persons.
Motorcycles	Emissions from any motor vehicle designed to travel with not more than three wheels in contact with the ground and weighing less than 680 kg.

Capacity Building for Improved Transparency of Climate Change Mitigation and Adaptation Actions in

ESTIMATION METHODS

Fuel Consumption method

Data Required: Fuel use for road transport

segregated by fuel

Jeep

Bouser

Crane

Truck

Fork-Lift

Excavator

Dumper

Ambulance

Data Source: FSM, HAKATHA, VILLA HAKATHA etc

Vehicle Kilometer travelled method

Data Required: Total vehicles, distance travelled and vehicle fuel economy segregated by vehicle type

Data Sources: Ministry of Transport, NBS

Time of Mahialas	Registered lawfcSokIrcTcsijwr										
Type of Vehicles	2010	2011	2012	2013	2014	2015	2016	2017	Major vehicles	Other vehicles	Not considered in 60 th percentile
Total	47,917	52,199	56,467	61,418	68,210	78,997	89,237	99,411	Motor cycle	Ambulance	Battery Scooter
Motor cycle	38,860	42,570	46,409	50,778	56,503	65,571	74,354	81,913		Crane	Battery Car
Car	3,348	3,510	3,708	3,994	4,495	5,269	5,754	6,165	Bus	Fork-Lift	Battery tricycle
Bus	99	128	132	140	151	163	178	196	Pick-Up	Excavator	Electric bicycle
Pick-Up	1,681	1,755	1,806 768	1,860	1,990	2,251	2,550	2,813	Lorry	Dumper	2.000.10 2.09 0.0
Lorry Van	750 986	756 1.038	1.077	772 1.154	783 1.248	802 1.371	820 1.485		Van	Tractor	

1,014

Jeep

Truck

above)

Taxi* (as explained

CBIT Maldives

Capacity Building for Improved Transparency of Climate Change Mitigation and Adaptation Actions in the Maldives Project

Loader

Bouser

Fuel tank truck

ACTIVITY DATA: VEHICLE KILOMETER TRAVELED (VKT)

Vehicle	Fuel	Fraction for type of gas	Km/day	Km/year	Km/Litre	Litre/km
Motor cycle	Petrol	1	13	4745	15	0.0667
Car ★	Petrol	1	22	8030	12	0.11
Taxis ★	Petrol	1	100	36500		0.11
Puc 🗞	Petrol	0.023	40	14600	5	0.164
Bus ❖	Diesel	0.977	40	14600	8	0.42
Dick up A	Petrol	0.3208	20	7300	7	0.143
Pick-up Δ	Diesel	0.678	20	7300	10	0.125
Lown, &	Petrol	0.021	40	14600	5	0.22
Lorry *	Diesel	0.979	40	14600	8	0.3
Van Δ	Petrol	0.4819	40	14600	5	0.142
Vall D	Diesel	0.5178	40	14600	8	0.125
loop A	Petrol	0.7337	20	7300	7	0.142
Jeep Δ	Diesel	0.2663	20	7300	10	0.125
Truck *	Petrol	0.0383	40	14600	5	0.22
Truck *	Diesel	0.9616	40	14600	8	0.3
Other vehicles �	Diesel	1	5	1825	8	0.3

^{★ =} Passenger cars with 3-way catalyst, Δ = Light duty trucks with 3-way catalyst, ❖ = Heavy duty trucks and buses

Capacity Building for Improved Transparency of Climate Change Mitigation and Adaptation Actions in

CALCULATION

 $Total\ fuel\ use\ (Gg) =\ Total\ fuel_{Litres}*Density_{fuel}\ /1000,\!000$ $Emissions\ in\ (Gg) =\ Total\ fuel\ mass_{Gg}*NCV_{of\ the\ fuel}*EF_{of\ the\ fuel}\ /1000,\!000$

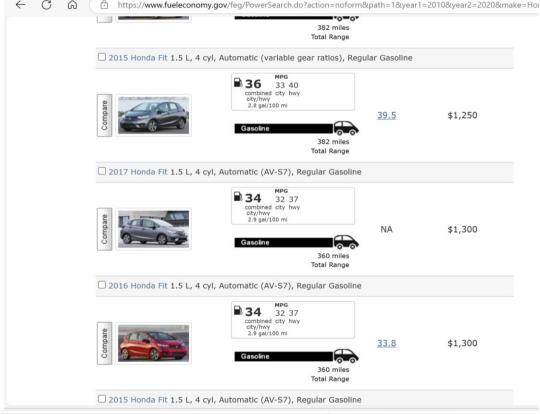
Emission Factor (EF) kg/TJ

Fuel	CO ₂	CH ₄	N ₂ O
Gas/Diesel Oil	74100	3.9	3.9
Petrol	69300	33	3.2

Capacity Building for Improved Transparency of Climate Change Mitigation and Adaptation Actions in

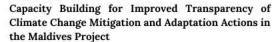
CBIT Maldives

QUALITY CHECKS


Cross check data and assumptions with similar estimates available from other national studies in transport sector

Cross reference could also be made with other similar vehicle fleets elsewhere.

For example, reference them with mileage data from comparative vehicle models in the US Department of Energy's database of vehicle fuel efficiency available at


https://www.fueleconomy.gov/.

OFF-ROAD TRANSPORTATION

CBIT Maldives

the Maldives Project

OVERVIEW

- Off-Road Transport emission calculations for Maldives has not been calculated separately in the past inventories prior to 2022 and have been grouped together in land transport.
- his is mainly due to the limited use of off road vehicles as defined in IPCC and it is mostly restricted to Ports, Airport and project based operations in Maldives.
- Emissions for off-road transport can be estimated from either fuel consumed at Airports, Ports and project based off road activities.
- As this has not been identified as a key category in the previous inventories, it is recommended to estimate the emissions via Tier 1 method as similar to the road transport.

CBIT Maldives

the Maldives Project

METHODS

Fuel Consumption method

Data Required: Fuel use for off road transport segregated by fuel

Data Source: MTCC, STO, MPL, MACL, Regional airports

 $Total\ fuel\ use\ (Gg) = Total\ fuel_{Litres} * Density_{fuel}/1000,000$

 $Emissions\ in\ (Gg) =\ Total\ fuel\ mass_{Gg}*NCV_{of\ the\ fuel}*EF_{of\ the\ fuel}/1000,\!000$

		Emission factor (EF) kg/TJ				
Fuel	NCV	CO ₂	CH ₄	N ₂ O		
Gas/Diesel Oil	43	74100	4.15	28.6		
Petrol – 4 stroke	44.3	69300	50	2		
Petrol – 2 stroke	44.3	69300	130	0.2		

Climate Change Mitigation and Adaptation Actions in

SAMPLE DATA SET FOR OFF ROAD TRANSPORTATION

					Fu	eling (MC	CH)	Fue	eling (Hulhur	male)	Fueling (Thilafushi)
ype of vehicle		Heavy/Light	Vehicle Name	Fuel type	2021 (L)	2022 (L)	2023 (L)	2021 (L)	2022 (L)	2023 (L)	2021 (L) 2022 (L) 2023
	Reach Stacker	Heavy	RS003	Diesel	13,488	17787	581				
	Reach Stacker	Heavy	RS004	Diesel	23,948	5543					
	Reach Stacker	Heavy	RS005	Diesel	24,120	32879	20,190				
	Reach Stacker	Heavy	RS006	Diesel	50,783	70209	21,954				
	Reach Stacker	Heavy	RS007	Diesel	304			18565.9	44731.87	13934.26	
Dooch Stocker	Reach Stacker	Heavy	RS008	Diesel				20413.1	35230.94	17584.88	
Reach Stacker	Reach Stacker	Heavy	RS009	Diesel	72,551	52132	15,605				
	Reach Stacker	Heavy	RS010	Diesel	46,427	51506					
	Reach Stacker	Heavy	RS011	Diesel			3,721				
	Reach Stacker	Heavy	RS012	Diesel			4,219				
	Reach Stacker	Heavy	RS013	Diesel			4,423				
	Reach Stacker	Heavy	RS014	Diesel			680			758	
	Barge Handlers	Heavy	BH003	Diesel	13,497	32802	4,370	1058.15	329.02	913.41	
Danes Handlans	Barge Handlers	Heavy	BH005	Diesel	1,354			23957.6	47081.55	16461.83	
Barge Handlers	Barge Handlers	Heavy	BH006	Diesel	68,038	51816	7,243				
	Barge Handlers	Heavy	BH007	Diesel		46236	23,546				
RTG	RTG	Heavy	RT001	Diesel	63,416	66700	19,301				
KIG	RTG	Heavy	RT002	Diesel	57,720	65067	18,027				
	Terminal Tractor	Heavy	TT003	Diesel							
	Terminal Tractor	Heavy	TT004	Diesel		468	27	381.79	148.17		
	Terminal Tractor	Heavy	TT007	Diesel		1148	668	168.45			
	Terminal Tractor	Heavy	TT012	Diesel							

the Maldives Project

QUALITY CHECKS

- Assess the data received by comparing the data with multiple years and see if there are any outliers or discrepancies.
- Compare the information between comparative operations to see if there are significant differences.
- Compare the fuel consumption rates with level or size of the operations from the data provider.

CBIT Maldives

the Maldives Project

Consult the expert group to verify the validity of the data received and any outliers and discrepancies identified in previous steps.

WATER BORNE NAVIGATION

CBIT Maldives

the Maldives Project

OVERVIEW

- Water-borne navigation encompasses all types of water-borne transport, ranging from cargo, passenger ferries, recreational craft to large ocean-going cargo ships, primarily powered by large, slow, and medium-speed diesel engines.
- In Maldives, there are no country specific emissions factors for the transport sector. Establishing a country specific emissions factors require careful planning and research data to be collected – which is not available
- To estimate the emissions using fuel consumption, fuel sales data to the marine vessels (if available) could be used as a Tier 1 method.
- Fuel sales data need to be obtained from public and private fuel sellers, where they sell the fuel to marine vessels.

CBIT Maldives

the Maldives Project

METHOD

Fuel Consumption method

Data Required: Fuel use for water borne transport segregated by fuel

CBIT Maldives

the Maldives Project

Data Source: Fuels sales data from marine vessels (both public and private) including fishing vessels, cargo boats, speedboats, passenger ferries, tug boat and those used for military purposes

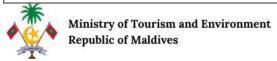
ESTIMATION METHOD - WATER BORNE NAVIGATION

 $Total\ fuel\ use\ (Gg) = Total\ fuel_{Litres}*Density_{fuel}/1000,000$ Emissions in $(Gg) = Total fuel mass_{Gg} * NCV_{of the fuel} * EF_{of the fuel} / 1000,000$

	Emission factor (EF) kg/TJ			
Fuel	NCV	CO ₂	CH ₄	N ₂ O
Gas/Diesel Oil	43	74100	7	2
Petrol	44.3	69300	7	2

Capacity Building for Improved Transparency of Climate Change Mitigation and Adaptation Actions in

WATER BORNE NAVIGATION - GENERAL


Estimate fuel use based on potential run hours (similar to VKT)

	Vessel type	Fuel type	Fraction of active vessels	Fraction of operating vessels per year	Fuel consumption (I/hr)	Annual Hours of operation
	Dhoni∆	Diesel	0.95	0.50	39.00	625.00
Passenger	Passenger ferry	Diesel	1.00	1.00	39.00	3650.00
	Speed boats	Petrol	0.19	0.70	65.00	1200.00
	Dhoni*	Diesel	0.95	0.60	39.00	871.20
	Bahtheli	Diesel	0.92	0.50	27.00	871.20
Cargo	Barge	Diesel	0.93	0.50	57.00	580.80
Cargo	Oil barge	Diesel	1.00	0.50	32.00	580.80
	Oil tankers	Diesel	0.60	0.50	32.00	580.80
	Landing craft	Diesel	0.91	0.50	32.00	580.80

Climate Change Mitigation and Adaptation Actions in

Δ 20% of Dhoni should be applied as Passenger Dhoni

* 3% of Dhoni should be applied as cargo Dhoni

WATER BORNE NAVIGATION - TOURISM

A parameter for litres/bednight can be used to estimate the fuel consumption by the safaris in the tourism sector.

Fuel	Resorts (fuel liters/bednight)	Safaris
		(fuel liters/bednight)
Petrol	2.60	1.06
Diesel	2.78	15.87

Year	Registered Bed Capacity (end Year)	Bed Capacity in Operation (annual average)	Bed Night Capacity	Tourist Bed Nights ⁻¹
2018	45,419	41,887	15,290,704	9,477,680
Resorts	32,137	29,400	10,731,344	8,000,049
Hotels	1,862	1,759	642,480	255,389
Guest Houses	8,563	8,000	2,921,048	944,521
Safari Vessels	2,857	2,728	995,832	277,720

Capacity Building for Improved Transparency of Climate Change Mitigation and Adaptation Actions in

QUALITY CHECKS

- Cross checked with similar estimates available from other national studies in marine transport sector.
- Cross reference with other similar marine transport in other small island developing countries.

CBIT Maldives

the Maldives Project

Capacity Building for Improved Transparency of Climate Change Mitigation and Adaptation Actions in

Seek expert opinion or judgement when in doubt

